refining & marketing

Filtrabilità Combustibili Diesel CEN TC19/WG 31 'Total Contamination & Filter Bloking Tendency'

Patrizia Ruggieri UNICHIM PIPP – Plenaria 18 Marzo 2010

eni

eni.com

Filtrabilità Combustibili Diesel

SOMMARIO

- Generalità sulla filtrabilità dei BioDiesel Condizioni preliminari alla ricostituzione del WG 31 nel 2009
- Mandato del CEN TC19/WG24 al WG31 'Total Contamination & Filter Blocking Tendency'
- Revisione del Metodo di Prova EN 12662
- Revisione del Metodo di Prova IP 387/ IP PM EA08
- Conclusioni

CEN TC 19/WG31, Anni 2005/2006

- EN 12662 Completamento di due Round Robin per il miglioramento della Precisione (r&R) ed estensione ai $\rm B_{XX}$ e $\rm B_{100}$
- Scarsa attendibilità dei dati di precisione per l'uso di campioni <sintetici>
- Scarsa applicabilità del metodo EN 12662 ai blending ${\rm B_{XX}}$ e ${\rm B_{100}}$
- Pubblicazione del metodo EN 12662 nel 2008, procedura modificata con dati di Precisone invariati

Generalità sulla Filtrabilità del BioDiesel

Anni 2007- 2008

- Evidenze di nuovi problemi legati alla filtrabilità del combustibile lungo la catena di distribuzione : produzione, trasporto, stoccaggio e PV
- Possibili cause : componenti provenienti dal biodiesel o loro interazione con componenti del gasolio
- Richiesta di Metodi di prova adequati a qualificare prestazione su campo dei prodotti

Mandato del WG24 al WG31 'Total Contamination & Filter Blocking Tendency'

- Sviluppo di uno o più metodi di TC e FBT per il Diesel autotrazione basato sulla revisione del test EN 12662:2008 o su metodi alternativi e/o complementari. Il nuovo(i) metodo(i) sulla prestazione alla filtrabilità dovrà fornire informazioni sulla tendenza a bloccare i filtri in condizioni di servizio normale per gasoli e FAME a specifica EN590 e EN14214
- Cooperazione con il JWG per l'applicabilità del(i) metodo (i) al 100% di FAME
- Studio di fattibilità dei metodi da concludersi entro Aprile 2010
- Aprile 2011, presentazione Bozza finale del(i) metodo(i)

- Revisione del metodo EN 12662 'Contaminazione Totale con estensione del campo di applicazione a B_{100} e B_{XX}
 - Attivazione di una TF coordinata da P. Tittarelli/SSC
 - individuazione e studio delle variabili operative significative del metodo
 - Obiettivi da verificare :
 - consistenza dei risultati con le modifiche al metodo,
 - livello di contaminazione coerente con il risultato,
 - assenza di effetto matrice
 - significatività del sotto-campionamento
 - rapidità e semplicità di esecuzione
 - indipendenza dalle variabili composizionali del FAME
 - precisione del metodo

refining & marketing

- *Revisione del metodo IP387/FBT e/o IP PM EA08/CS-FBT con estensione del campo di applicazione a B_{100} e B_{XX}
 - Attivazione di una TF coordinata da Mark Brewer/Shell
 - acquisizione di dati sperimentali su campioni B₁₀₀ e B₁₀ addizionati di MG e SG
 - Obiettivi
 - Composizione vs. FBT
 - Composizione vs. Prestazioni su campo
 - FBT vs. Prestazioni su campo

Revisione EN 12662 – Studio di Fattibilità

Variabili sperimentali: Filtro, Volume Campione, Solvente di lavaggio, Trattamento BioDiesel;

- Tipologia e dimensione (unificata) del Filtro
 - Fibra di vetro
 - Isopore (policarbonato) (Escluso per incompatibilità con Xilene)
- Volume di campione
 - 250 ml
 - 300 ml (Escluso)
- Solvente di lavaggio
 - n-C7,
 - Isopar (Esclusa)
- Trattamento del BioDiesel (pre-diluizione)
 - Assente
 - Diluizione con n-C7/Xilene 75:25

Revisione EN 12662 - Studio di Fattibilità

Indicazioni generali all'esecuzione sperimentale:

- fenomeno di 'maturazione' del biodiesel: completamento delle prove sperimentali in tempi limitati e misure controllate dopo alcuni mesi
- pre-diluizione del BioDiesel: definizione della temperatura e dell'intervallo di tempo dal momento della diluizione a quello del test
- procedura di lavaggio del campione descritta in dettaglio
- Condizione di omogeneità dei campioni contaminati in modo <reale>
- campioni FAME di 4-5 tipologie differenti ed esenti da additivazione
- 6-7 i laboratori partecipanti
- valutazione dei Dati, Maggio 2010

- Obiettivo della FBT-TF:
 - Definire un metodo di filtrabilità in grado di distinguere la presenza di componenti responsabili di precipitati nel Biofuel (B_{100}) e nei blending B_{10}
- Attività condotta in stretta collaborazione con EI Subgroup B7
- Aree di attività esaminate per il BioDiesel:
 - Relazione tra il campione 'fresco' ed 'invecchiato' e i risultati al Cold Soak
 - Effetto dell'uso di diversi diluenti nella prova di filtrabilità con CS :
 - CS IP387
 - CS IP387 Bxx(DAK)
 - CS IP387 Bxx(Isopar)
 - CS IP387 Bxx(ULSD)
 - Ricerca delle cause composizionali sulla variabilità dei risultati

Conclusioni preliminari:

- Tendenzialmente, valori crescenti di FBT nel corso del processo di invecchiamento del campione
- Il kerosene dearomatizzato (DAK) è un buon diluente (in sostituzione di carburante EN590) per la prova FBT
- La Isopar è un diluente severo che favorisce la variabilità dei risultati
- Steroli-glicosidi (SG) nel BioDiesel ≥ 20 mg/kg, possono aumentare il valore filtrabilità
- MonoGliceridi Saturi(sMG) ≤ 2000 mg/kg, non sembrano incidere sulla filtrabilità
- Possibili relazioni monovariate tra FBT, CS-FBT e parametri composizionali (sMG, SG, H₂O) ma assenza di relazioni multivariate
- Tendenzialmente, misure CS-FBT più stabili e più sensibili all'invecchiamento del BioDiesel delle misure FBT
- La ripetibilità di FBT-B (anche r>R) è tale da ridurre la significatività di differenze di misura in settimane diverse

refining & marketing

Dati di Filtrabilità al variare di sMG e SG (da Cargill)

FAME Distillato		FBT	CS-FBT
sMG	SG		
0	0	1,01	1,02
0	80	10	10
400	80	10	7,6
800	0	1,01	1,02
800	20	3,16	6,08
1000	0	1	1,0
1000	80	10	10,05
2000	0	1,0	1,01
2000	20	2,90	4,40
3500	0	1,01	1,03

Esperienza REPSOL – Fattore di Filtrabilità quale indicatore della qualità del BioDiesel

- Background
 - Inverno 2008, blocco filtri di veicoli diesel
 - Analisi dei filtri, forte presenza di sMG
- Sviluppo di un metodo di filtrazione basato su IP PM-EA/08
- Fasi del processo analitico :
 - Riscaldamento a 60°C (3 ore)
 - Raffreddamento a 20°C (2 ore)
 - Trattamento a 5°C (cold soak, 16 ore)
 - Riscaldamento a 20 °C (2 ore)
 - Valutazione dell'aspetto
 - FBT IP 387 procedura B

Esperienza REPSOL – Fattore di Filtrabilità quale indicatore della qualità del BioDiesel

- Scala di classificazione dell'Aspetto ridefinita secondo 4 gradi
 - Grado 0 chiaro, limpido, assenza di materiale sospeso o precipitato e di film superficiale
 - Grado 0,5 leggermente opaco, poche particelle sospese o precipitate, assenza di film superficiale
 - Grado 1 opaco, particelle sospese o precipitate, presenza di film superficiale
 - Grado 2 fortemente opaco, particelle sospese o precipitate
 >75% del volume totale, film superficiale >75% dell'area esposta
- Fattore di Filtrabilità

FF = FBT + 0.85xGrado di Valutazione

Valori di FF ≤ 1,8 garantiscono buone prestazioni su campo

Caso blocco filtri alla pompa – 1 (UK 2008-9)

- Gasolio a specifica EN590 e Biodiesel EN14214
- Presenza di un deposito bianco tipo paraffinoso
- Assenza di attività microbiologica significativa
- Analisi del deposito
 - Presenza di MG ad alti livelli (confermata da misure IR e NMR)
 - SG non rilevabile
 - Elevata presenza di esteri saturi da determinazione EN14331
- Misure di filtrabilità FBT e CS-FBT <u>NON</u> elevate

Caso blocco filtri in un tank di deposito ad un terminal 2 (Svezia 2007-8)

- Gasolio Swedish Class1 (bassi aromatici, basso S, CFPP e CP ~ -30°C
- Biodiesel a specifica EN 14214, additivato per migliorare le prestazioni a freddo (CFPP: -20°C, CP:-5°C)
- Depositi bianchi e soffici, tipo paraffina
 - Presenza di MG (confermata da analisi IR, NMR e GC)
 - Assenza di SG
- Nessuna attività microbiologica rilevata
- I test di filtrabilità non hanno dato indicazioni significative

Conclusioni

- Maggiore attenzione alle caratteristiche composizionali (sMG, SG, H₂O, Saponi, etc) che potrebbero rivelare un maggiore potere discriminante rispetto a test di filtrabilità in grado di distinguere tra prodotti fit-for-purpose e non
- Raccogliere l'esperienza maturata in Europa relativamente a corrispondenze riscontrate tra problemi su campo e misure di filtrabilità
- Estensione del FF ai BioDiesel del mercato europeo e verifica di corrispondenze con fenomeni su campo

